

Trends & Challenges in ATMP manufacturing

Frank van Engelenburg

Introduction

Advanced Therapy Medicinal Products (ATMP) include:

- Gene therapy products e.g. AAV-based products
- Cell-based and "substantially manipulated" products e.g. CAR-T products

Development of ATMPs

- Bringing a research procedure for preparing a candidate medicinal product to the clinic
- Considering product quality, safety and efficacy
- Entering an highly regulated environment
 - Compliance with Good Manufacturing Practice for ATMP
 - Compliance with regulatory guidances and pharmacopoeia
- Regulators understand that ATMP are special

EudraLex The Rules Governing Medicinal Products in the European Union Volume 4 Good Manufacturing Practice

<u>Guidelines on Good Manufacturing Practice specific to Advanced</u> <u>Therapy Medicinal Products</u>

Document History	
Adoption by the European Commission	22 November 2017
Date for coming into operation	ATMP manufacturers should comply with these Guidelines no later than 22 May 2018.

These Guidelines are specific to ATMPs. Other documents developing GMP requirements for medicinal products which are contained in Volume 4 are not applicable to ATMPs, unless specific reference thereto is made in these Guidelines.

3

Development of ATMPs

Learning Development/Regulatory language:

- Considering product attributes ("outputs") of the developed ATMP
 - E.g. the quality attribute purity: e.g. microbial contamination
- Risk-based approaches ("RBA") are encouraged for ATMP
- Various risk assessment tools can be used; see ICH Q9 guideline
- RBA is the basis for designing suitable control strategies e.g. microbial control strategy
- For each product attribute a specific control strategy can be established
- It is understood that for early clinical development process and product knowledge is limited

Figure 1. Overview of a typical quality risk management process

ICH Q9 guideline

Development of ATMP: Tips

- Get development expertise on board i.e. in your own organization
- Select suitable partner (CDMO; internal or external) for production of clinical ATMP material
- Typically three candidate CDMO should be compared for quality, timing and cost
- Assure the CDMO has a GMP-license for production of clinical ATMP material
- Tech transfer from research process to GMP process needs substantial investments in time and money
- The CDMO may use a platform for production of clinical ATMP material e.g. particular equipment
- **Communication** with CDMO is key and needs careful consideration
- Face-to-face meetings with the CDMO and wittnessing of production are essential

PROGRESS

Development of ATMPs: Process Design

- Test donor of cells / patient for blood-born viruses and bacteria
- Minimize use of raw materials from animal or human origin
 - If such materials cannot be replaced, use gamma-irradiated quality
- Use qualified viral vectors including testing for viral contaminants
- Design processes such to minimize risk for microbial contamination
 - E.g. aim for using closed systems for manufacturing
- Run processes in *qualified* clean rooms using *qualified* equipment
- Qualify operators for aseptic techniques and apply health policy

Development of ATMP: Process Development

- Define process steps
- Explore relevant process parameters for each process step
- Set target ranges for relevent process parameters
- Assess effect of batch-to-batch variation of raw and starting materials
- Study impact of hold steps on product quality
- Select suitable excipients for final product formulation, controlling pH and osmolality
- Evaluate compatibility of contact materials e.g. final container

Ref: CRB Insights

✓ PROGRESS

Development of ATMPs: Analytical Development

- Design sampling plan for raw materials, starting material, in process controls and final product
- Select tests for samples collected; for early development more samples tested than for routine production
- Use suitable samples volumes e.g. not more than 10% of the volume of the final product
- Use rapid tests to allow batch release immediately after production of final product
- Validate selected test methods prior to GMP manufacturing
- Set specifications smart: tight where needed; wide where possible
- Initiate stability studies, including in use stability studies
- Initiate product characterization studies

Development of ATMP: Facilities and Equipment

- Facility options:
 - In house clean room facilities
 - Rental clean room facilites; using your own operators
 - CDMO; fully outsourced
- Equipment:
 - Use closed systems
 - Use standard equipment were possible

Development of ATMP: Summary

- Development of ATMP follows the same path as development of other biologics, with its unique challenges
- Regulators understand these challenges and allow some flexibility in particular for early development
- When moving from the research stage to development stage, the development team should be supplemented with development experts keeping oversight on the development of the ATMP
- The process as developed on the research bench needs to be transferred to a GMP production facility
- A suitable partner for GMP production should be carefully selected
- A risk based approach is encouraged for designing suitable control strategies for the production of ATMP
- Control of starting and raw materials for microbial and viral contamination is critical
- Closed systems are preferred for controlling microbial contamination risk during production of ATMP
- Effective and efficient analytical and process development are critical for successful ATMP development

PROGRESS

Thank you for your attention

Frank van Engelenburg +31 6 2121 6998 f.van.engelenburg@progress-lifesciences.nl

Progress

Bijlmermeerstraat 20 2131 HG Hoofddorp

info@progress-lifesciences.nl www.progress-lifesciences.nl

